p-group, metabelian, nilpotent (class 2), monomial, rational
Aliases: C23≀C2, C26⋊1C2, C24⋊15D4, C24⋊1C23, C25.88C22, C23.746C24, C22⋊3C22≀C2, (C22×C4)⋊1C23, C24⋊3C4⋊28C2, C23.628(C2×D4), (C22×D4)⋊15C22, C22.456(C22×D4), (C2×C22≀C2)⋊17C2, C2.29(C2×C22≀C2), (C2×C22⋊C4)⋊33C22, 2-Sylow(SO+(4,8)), SmallGroup(128,1578)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 3332 in 1711 conjugacy classes, 180 normal (5 characteristic)
C1, C2 [×7], C2 [×29], C4 [×7], C22 [×35], C22 [×315], C2×C4 [×21], D4 [×28], C23, C23 [×42], C23 [×683], C22⋊C4 [×42], C22×C4 [×7], C2×D4 [×42], C24, C24 [×35], C24 [×308], C2×C22⋊C4 [×21], C22≀C2 [×28], C22×D4 [×7], C25 [×7], C25 [×28], C24⋊3C4 [×7], C2×C22≀C2 [×7], C26, C23≀C2
Quotients:
C1, C2 [×15], C22 [×35], D4 [×28], C23 [×15], C2×D4 [×42], C24, C22≀C2 [×28], C22×D4 [×7], C2×C22≀C2 [×7], C23≀C2
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=g2=1, ab=ba, ac=ca, gag=ad=da, ae=ea, af=fa, bc=cb, bd=db, gbg=be=eb, bf=fb, cd=dc, ce=ec, gcg=cf=fc, de=ed, df=fd, dg=gd, ef=fe, eg=ge, fg=gf >
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14)(15 16)
(1 15)(2 16)(3 4)(5 6)(7 10)(8 9)(11 12)(13 14)
(1 8)(2 7)(3 6)(4 5)(9 15)(10 16)(11 13)(12 14)
(1 7)(2 8)(3 11)(4 12)(5 14)(6 13)(9 16)(10 15)
(1 9)(2 10)(3 13)(4 14)(5 12)(6 11)(7 16)(8 15)
(1 10)(2 9)(3 5)(4 6)(7 15)(8 16)(11 14)(12 13)
(1 6)(2 14)(3 16)(4 10)(5 8)(7 13)(9 11)(12 15)
G:=sub<Sym(16)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,4)(5,6)(7,10)(8,9)(11,12)(13,14), (1,8)(2,7)(3,6)(4,5)(9,15)(10,16)(11,13)(12,14), (1,7)(2,8)(3,11)(4,12)(5,14)(6,13)(9,16)(10,15), (1,9)(2,10)(3,13)(4,14)(5,12)(6,11)(7,16)(8,15), (1,10)(2,9)(3,5)(4,6)(7,15)(8,16)(11,14)(12,13), (1,6)(2,14)(3,16)(4,10)(5,8)(7,13)(9,11)(12,15)>;
G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16), (1,15)(2,16)(3,4)(5,6)(7,10)(8,9)(11,12)(13,14), (1,8)(2,7)(3,6)(4,5)(9,15)(10,16)(11,13)(12,14), (1,7)(2,8)(3,11)(4,12)(5,14)(6,13)(9,16)(10,15), (1,9)(2,10)(3,13)(4,14)(5,12)(6,11)(7,16)(8,15), (1,10)(2,9)(3,5)(4,6)(7,15)(8,16)(11,14)(12,13), (1,6)(2,14)(3,16)(4,10)(5,8)(7,13)(9,11)(12,15) );
G=PermutationGroup([(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14),(15,16)], [(1,15),(2,16),(3,4),(5,6),(7,10),(8,9),(11,12),(13,14)], [(1,8),(2,7),(3,6),(4,5),(9,15),(10,16),(11,13),(12,14)], [(1,7),(2,8),(3,11),(4,12),(5,14),(6,13),(9,16),(10,15)], [(1,9),(2,10),(3,13),(4,14),(5,12),(6,11),(7,16),(8,15)], [(1,10),(2,9),(3,5),(4,6),(7,15),(8,16),(11,14),(12,13)], [(1,6),(2,14),(3,16),(4,10),(5,8),(7,13),(9,11),(12,15)])
G:=TransitiveGroup(16,325);
Matrix representation ►G ⊆ GL6(ℤ)
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | -2 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,Integers())| [-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,-2,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2AI | 2AJ | 4A | ··· | 4G |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 8 | 8 | ··· | 8 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | D4 |
kernel | C23≀C2 | C24⋊3C4 | C2×C22≀C2 | C26 | C24 |
# reps | 1 | 7 | 7 | 1 | 28 |
In GAP, Magma, Sage, TeX
C_2^3\wr C_2
% in TeX
G:=Group("C2^3wrC2");
// GroupNames label
G:=SmallGroup(128,1578);
// by ID
G=gap.SmallGroup(128,1578);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,758,2019]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=g^2=1,a*b=b*a,a*c=c*a,g*a*g=a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,g*b*g=b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,g*c*g=c*f=f*c,d*e=e*d,d*f=f*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations